K
T

~

Iréir%uction to Embedded Systems @

. Internal flash (in many systems the results of processing can be saved in nonvolatile memory: for example,

system status periodically and images, songs, or speeches after suitable format compression).

. Memory stick (or card): video, images, songs, or speeches and large storage in digital camera and

_mobile systems. Sony memory stick Micro (M2) is of size 15x12.5x1.2 mm and has a flash memory
of 2 GB. It has a data transfer rate of 160 Mbps (mega bit per second) and PRO-HG 480 Mbps and
120 Mbps write [since Dec. 2006.]

. External ROM or PROM for embedding software (in almost all systems other than microcontroller-

based systems).

. RAM memory buffers at ports.

Caches (in pipelined and superscalar microprocessors).

emb

ble 1.1 details the functions assigned in embedded systems to the memories. ROM or PROM or EPROM
s the software specific to the system.

Table 1.1 Functions assigned to the memories in a system

Memory Needed Functions

or ffash Storing codes for system booting, initializing, initial input data and strings. Codes for

and RAM for buffer buffers, for example, for speech or image.

PROM or Flash Storing nonvolatile results of processing.

the Storing copies of instructions and data in advance from external primary memory and

or EPROM Storing application programs from where the processor fetches the instruction codes.
RTOS. Pointers (addresses) of various interrupt service routines (ISRs).

(internal and external) ~ Storing the variables during program run and storing the stack. Storing input or output

ry stick A flash memory stick is inserted in mobile computing system or digital-camera. It
stores high definition video, images, songs, or speeches after a suitable format
compression and stores large persistent data.

storing the results temporarily during processing.

‘2'
3

ystem embeds (locates) the following either in the internal flash or ROM, PROM or in an external flash

OM or PROM of the microcontroller: boot-up program, initialization data, strings or pictogram for

en-display or initial state of the system, programs for various tasks, ISRs and operating system kernel.
pi system has RAMs for saving temporary data, stack and buffers that are needed during a program run.
{system uses flash for storing nonvolatile results.

.6 Input, Output and 10 Ports, 10 Buses and |0 Interfaces

system gets inputs from physical devices through the input ports. Examples are as follows:
1.

A system gets inputs from the touch screen, keys in a keypad or keyboard, sensors and transducer
circuits.

A controller circuit in a system gets inputs from the sensor and transducer circuits.

. Areceiver of signals or a network card gets the input from a communication system. [A communication
system could be a fax or modem, or a broadcasting service.]

Ports receives inputs from a network or peripheral.

Embedded Sy

Consider the system in an Automatic Chocolate Vending Machine. It gets inputs from a port that cpllects
the coins that a child inserts.

Consider the system in a mobile phone. A user inputs the mobile number through the buttons, diregtly or
indirectly (through recall of the number from its memory). Keypad keys connect to the system throygh an
input port.

A processor identifies each input port by its memory buffer addresses, called port addresses. Jugt as a
memory location holding a byte or word is identified by an address, each input port is also identified by the
address. The system gets the inputs by the read operations at the port addresses.

The system has output ports through which it sends output bytes to the real world. Examples are as foflows:

1. Output may be sent to an light emitting diode (LED), liquid crystal display (LCD) or touch $creen
display panel. For example, a calculator or mobile phone system sends the output-numbers or af SMS
message to the LCD display. ‘
A system may send the output to a printer.

Output may be sent to a communication system or network.
A control system sends the outputs to alarms, actuators, furnaces or boilers. i
- A robot is sent output for its various motors.

Each output port is identified by its memory-buffer addresses (called port addresses). The system sequ; the
output by a write operation to the port address. |

There are also general-purpose ports for both the input and output (10) operations. For example, a nhobile
phone system sends output as well as gets input through a wireless communication channel. A mobile com uting
system touch screen system sends output as well as gets input when a user touches the menu displayed rlkey
on the screen. ‘

Each IO port is also identified by an address to which the read and write operations both take place] '

Ports can have serial or parallel communication with the system address and data buses. In serial commug%ation

@R

a one-bit data line is used and bits are sent serially in successive time slots. Universal Asynchronous Regeiver
and Transmitter (UART) is a popular communication protocol for serial communication. In parallel
communication, several data lines are used and bits are sent in parallel. i
A system port may have to send output to multiple channels. A demultiplexer or multiplexer circuit i$ then
used. .
A demultiplexer is a digital circuit that sends digital outputs at any instance to one of the provided cl:?:cls.

The channel to which the output is sent is the one that is addressed by the channel address bits #t ithe
demultiplexer input. A demultiplexer takes the input and transfers it to a select channel output amorlg jthe
multiple output channels.
A multiplexer is a digital circuit that receives digital inputs at any instance from multiple channelq, and
sends data output only from a specific channel at an instance. The channel address bits are at multi ldxer
input. A multiplexer takes the input from one among the multiple input channels and transfers a segedted
channel input to the output.
A system unit (for example, memory unit or IO port or device) may have to be selected from amorjg the
multiple units in the system and activated. A decoder circuit when used as an address decoder decodes the input
addresses and activates the selected output channel from among the many outputs. For example, there are 8lunits
of which one has to be selected. An address-select input of 3 bits is input to the decoder. Based on the input
address, the output select line among the 8 activates. If the input address bit is 000, then the 0th output is gctive
and the 0™ unit activates. If the input address bit is 111, then the 7™ output is active and the 7" unit activies.

Bus A system might have to be connected to a number of other devices and systems. A bus consistd of a
common set of lines to connect multiple devices, hardware units and systems for communication betweeh any

Intrpdhiction to Embedded Systems

two of these at any given instance. A bus communication protocol specifies how signals communicate on the
bus. Afbus may be a serial or paralle] bus that transfers one or multiple data bits at an instance, respectively.
The prptocol also specifies the following: (i) ways of arbitration when several devices need to communicate
through the bus; (ii) ways of polling bus requirement from each device at an instance; (iii) ways of daisy
chaininjg the devices so that bus is granted to a device according to the device-priority in the chain.
networking the distributed units or systems, there are different types of serial and parallel bus protocols:
, USB, ISA, EISA and PCI. For wireless networking of systems there are 802.11, IrDA, Bluetooth
and ZigBee protocols. 7

dpter 3 will describe the ports, devices, buses and protocols in detail.

A g\'em connects to external physical devices and systems through parallel or serial 1/0O ports.
Dempltiplexers and multiplexers facilitate communication of signals from multiple channels through a
corarhon path. A system often networks to the other devices and systems through an I/0 bus: for example,
120, CAN, USB, ISA, EISA and PCI bus.

1.3.7 DAC Using a PWM and an ADC

DAGC # a circuit that converts digital 8 or 10 or 12 bits to the analog output. The analog output is with respect
to the feference voltage. When all input bits are equal to 1, then the analog output is the difference between
the ? Kitive and negative reference pin voltages; when all input bits equal 0, then the analog output equals
—ve reference pin voltage (usually 0 V).

S&l pose a system needs to give the analog output of a control circuit for automation. The analog output
may bg to a power system for d.c. motor or furnace.

A pulse width modulator (PWM) with an integrator circuit is used for the DAC. A PWM unit in the
microgontroller operates as follows: Pulse width is made proportional to the analog-output needed. PWM
inputs| are from 00000000 to 11111111 for an 8-bit DAC operation. The PWM unit outputs to an external
integrjtor, which provides the desired analog output. From this information, the formula to obtain the analog
outpuf from the bits in a given PWM register with bits ranging from 00000000 to 11111111 is as follows:
Analog output V = K- pw, where K is constant and pw is the pulse width.

Suppose a circuit (external to the microcontroller) gives an output of 1.024 V when the pulse width is 50%
of the total pulse time period, and 2.047 V when the width is 100%. When the width is made 25%, by
reducing by half the value in the PWM output control-register, the integrator output will become 0.512 V. The
constdnt K depends on integrator amplifier gain.

Ashume that the integrator operates with a dual (plus-minus) supply. The PWM unit in the microcontroller
operafes by another method, which is as follows. Assume that when an integrator circuit gives an output of
. the pulse width is 100% of the total pulse time period and of -1 .024 V when the width is 0%. When
the Wwidth is made 25% by reducing by half the value in an output control register, the integrator output will be
0.512{V: at 50% the output will be 0.0 V. From this information, the formula to obtain the analog output from
the bifs in a given PWM register ranging from 00000000 to 11111111 in both situations is as follows: Analog
outpu} V = 0.01. K’. (pw — 50), where K’ is constant and pw is pulse width time in percentage with respect to
ime period. K’ depends on integrator amplifier gain.

Analbg to Digital Converter ADC is a circuit that converts the analog input to digital 4, 8, 10 or 12
bits. The analog input is applied between the positive and negative pins and is converted with respect to the
reference voltage. When input is equal to difference of reference positive and negative voltages, then all
output bits equal 1; when equals negative reference voltage (usually 0 V), then all output bits equal 0.

|
Embedded SJﬁms

The ADC in the system microcontroller can be used in many applications such as data acquisition systems
(DAS), digital cameras, analog control systems and voice digitizing systems. Suppose a system gets the
analog inputs from sensors of temperature, pressure, heart-beats and other sources in a DAS. Suppése a
system gets the analog inputs from a digital camera. It has CCD (Charge Couple Device) which has tin; pixels
pomt
lo be

that charge up on exposure to light. The charging of each pixel depends upon the light intensity at t
in the image. The analog inputs to the system generate from each pixel. Each pixel’s analog input h
converted into bits to enable processing in the next stage.

Suppose a system needs to read an analog input from a sensor or transducer circuit. If converted to bits by
the ADC unit in the system, then these bits, after processing, can also give an output. This provides a ¢ontrol
for automation by a combined use of ADC and DAC features.

The converted bits can be given to the port meant for digital display. The bits may be transferrgd'to a
memory address, a serial port or a parallel port. |

A processor may process the converted bits and generate a Pulse Code Modulated (PCM) output] PCM
signals are used to digitize voice into a digital format.

Important points about the ADC are as follows.

1. Either a single or dual analog reference voltage-source is required in the ADC. It sets either the hnalog
input’s upper limit or the lower and upper limits both. For a single reference source, the lower Himit is
set to 0 V (ground potential). When the analog input equals the lower limit, the ADC generates fll bits
as 0s, and when it equals the upper limit it generates all bits as 1s. [As an example, suppose in ag ADC
the upper limit or reference voltage is set to 2.255 V. Let the lower limit reference voltage be 0. 255 V.
The difference in the limits is 2 V. Therefore, the resolution will be 2/256 V. If the 8-bit ADC alog-
input is 0.255 V, the converted 8 bits will be 00000000. When the input is 0.255 V + 1.000 V = 1 35V,
the bits will be 10000000. When the analog input is 0.255 V + 0.50 V, the converted bits Vill be
01000000. [From this information, finding a formula to obtain converted bits for a given nalog
input = v volt is as follows: Binary number n bits after conversion in an n-bit ADC corres ds to
decimal number N. Then N =v. (V ¢, — V .)/2". Here, V., is the reference voltage that gives l]the
bits that are equal to 1 and V - is the reference voltage that gives all the bits that are equal to J

2. An ADC may be of 8, 10, 12, or 16 bits depending upon the resolution needed for conversion] |

3. The start of the conversion (STC) signal or input initiates the conversion to 8 bits. In a systgm, an
instruction or a timer signals the STC. :

4. There is an end of conversion (EOC) signal. A flag in a register is set to indicate the end of convergion
and the ADC generates an interrupt; the ISR reads the ADC bits and saves them in the memory)u"ffer.

5. There is a conversion time limit in which the conversion is definite. ‘

6. A Sample and Hold (S/H) unit is used to sample the input for a fixed time and hold till conversion is
over. |

An ADC unit can be repeatedly used after the intervals equal to the conversion time. Therefore, ;ief can

digitizes the DAS sensor signals, CCD signals, voice, music or video signals, or heart beat sensor si als in
different systems. An ADC unit in an embedded system microcontroller may have multichannels. It ¢ then
take the inputs in succession from the various pins interconnected to different analog sources. |

For automatic control and signal processing applications, a system provides necessary interfacing
and software for the Digital to Analog Conversion (DAC) unit and Analog to Digital Conversion (
unit. A DAC operation is done with the help of a combination of a PWM unit in the microcontroller
external integrator chip. ADC operations are required for data acquisition, image processmg,
processing, video processing, instrumentation and automatic control systems. ¥

3 jon to Embedded Systems

1.3.8 |LCD, LED and Touchscreen Displays

A systein requires an interfacing circuit and software to display the status or message for a line, for multiline
display, or for flashing displays. An LCD screen may show up a multiline display of characters or also show
a small jgraph or icon (called a pictogram). A recent innovation in the mobile phone system turns the screen
blue tb jndicate an incoming call. Third generation system phones have both image and graphic displays. An
LCD hefds little power. A supply or battery (a solar panel in the calculator) powers it. The LCD is a diode that
absorbs{or emits light and 3 to 4 V and 50 or 60 Hz voltage-pulses with currents less than ~50 JLA are required.
The pulses are applied with the same polarity on the crystal front and back plane for no light, and with
ite polarity for light. Here, polarity means logic ‘1" or ‘0’. A display-controller is often used in case of
matrix displays.

To ifdicate the ON status of the system, there may be an LED that glows. A flashing LED may indicate that
a speciffc task is under completion or is running or in wait status. The LED is a diode that emits yellow, green,
red of iffrared light in a remote controller on application of a forward voltage of between 1.6-2 V. It needs
current up to 12 mA above 5 mA (less in flashing display mode). It is much brighter than the LCD, making it
suitabld for flashing displays and for displays limited to a few digits.

A'tduchscreen is an input as well as an output device, which can be used to enter a command, a chosen menu
or to giye a reply. The information is input by physically touching at a screen position using a finger or a stylus.
A stylus is thin pencil-shaped object. It is held between the fingers and used just as a pen. The screen displays the
choicesjor commands, menus, dialog boxes and icons. The display-screen display is similar to a computer video
display funit screen. Newer touch screen senses the fingers even from proximity, for example, in Apple iPhone.

Sections 3.3.4 and 3.3.5 describe the LCD and touchscreen devices and their connections to the system.

irstem may need the necessary interfacing circuit and software for the output to the LCD display
Hler and the LED interfacing ports or for the I/Os with the touchscreen.

1.3.9) Keypad/Keyboard

The keypad or keyboard is an important device for getting user inputs. The system provides the necessary
interfating and key-debouncing circuit as well as the software for the system to receive input from a set of
keys, ftom a keyboard, keypad or virtual keypad. A touchscreen provides for a virtual keypad in a mobile
computing system. A virtual keypad is a keypad displayed on the touch screen where the user can enter the
keys using a stylus or finger.

ypad has upto a maximum of 32 keys. A keyboard may have 104 keys or more. The keypad or
keybogrd may interface serially or parallelly to the processor directly through ports or through a controller.
Mobil¢ phones may have a T9 keypad. A T9 keypad has 16 keys and four up-down right-left menu keys.
to 9 keys text messages, such as SMS messages, are generated.

uts, a keypad or board may interface to a system. The system provides necessary interfacing circuit
ftware to receive inputs directly from the keys or through a controller.

1.3.10 Pulse Dialer, Modem and Transceiver

For user connectivity through the telephone line, wireless or a network, a system provides the necessary
interfacing and circuits. It also provides the software for pulse dialing through the telephone line, for modem

|
Embedded #ﬂsams

interconnection for fax, for Internet packets routing and for transmitting and connecting to a wireless|cellular
system or personal area wireless network. A transceiver is a circuit that can transmit as well as|receive

byte streams.

In communication system, a pulse dialer, modem or transceiver is used. A system provides the neg
interfacing circuit and software for dialing and for the modem and transceiver, directly or
controller.

1.3.11 Interrupt Handler

A timing device sends a time-out interrupt when a preset time elapses or sends a compare interrupt when the
present-time equals the preset time. Assume that data have to be transferred from a keyboard to a prjnter. A
port peripheral generates an interrupt on receiving the input data or when the transmitting buffer becomes
empty. Each action generates an interrupt. A system may possess a number of devices and the system prpaessor
has to control and handle the requirements of each device by running an appropriate ISR (interrupt [service
routine) for each. An interrupts-handling mechanism must exist in each system to handle interrupgs, from
various processes and for handling multiple interrupts simultaneously pending for service. Chapter 4 ddsdribes

in detail the interrupts, ISRs, and their handling mechanisms in a system. Important points reg
interrupts and their handling by the program are as follows.
1.

bt

A system provides an interrupt handling mechanism for executing the ISRs in case of the interrupt§
physical devices, systems, software instructions and software exceptions. :

There can be a number of interrupt sources and groups of interrupt sources in a processor.
[Section 4.3] An interrupt may be a hardware signal that indicates the occurrence of
[For example, a real-time clock continuously updates a value at a specified memory ad
transition of that value is an event that causes afi interrupt.] An interrupt may als
through timers, through an interrupting instruction of the processor program or through ah error
during processing. The error may arise due to an illegal op-code fetch, a division by zero result or an

A software interrupt may arise in an exceptional condition that may have developed while
program.
The system may prioritize sources and service them accordingly. [Section 45.]

. Certain sources are not maskable and cannot be disabled. Some are assigned the highest priority

during processing.

of the interrupt. For example, if a key is pressed, then an ISR reads the key and stores the key
the processor memory address. If a sequence of keys is pressed, for instance in a mobile pho
an ISR reads the keys and also calls a task to dial the mobile number.

The operating system is expected to control the handling of interrupts and running of routines ffar the

interrupts in a particular application. The system always gives priority to the ISRs over the tas
application. ’

i

suction to Embedded Systems

EMBEDDED SOFTWARE IN A SYSTEM

ftware is like the brain of the embedded system.

Final Machine Implementable Software for a System

bedded system processor executes software that is specific to a given application of that system. The
instriction codes and data in the final phase are placed in the ROM or flash memory for all the tasks that are
execyted when the system runs. The software is also called ROM image. Why? Just as an image is a unique
sequénce and arrangement of pixels, embedded software is also a unique placement and arrangement of bytes
for'igstructions and data.

ch code or datum is available only in the bits and bytes format. The system requires bytes at each
address, according to the tasks being executed. A machine implementable software file is therefore
table having in each rows the address and bytes. The bytes are saved at each address of the system
ry. The table has to be readied as a ROM image for the targeted hardware. Figure 1.5 shows the ROM

image in a system memory. The image consists of the boot up program, stacks address pointers, program
counter address pointers, application programs, ISRs, RTOS, input data and vector addresses.
. 2 Bytes for
Address of T ere System
Stack e ~._ | Starts
on -~--SP-ADDR E ~¢ Execution on
Power Up
Reset (Not Needed in
_ADDR-1 80x86,8051,80196,
/,’/ e | U)
Interrupt Service | -~ __..-ADDR-2 == Bytes for
Routine Vector | .~-"" ® - 5 TR Data as
Addresses of ~=---ADDR-3 i Inputs for each
2 Bytes each i] interrupt
Bootup ADDR-4 — /, ' Service Routine
Program {------------=-=---=f--=-- T o
Codes ADDR-5 —
o’
ADDR-6 =
N A Machine Specific
ADDR-7 ==~ Codes for
®------- 4-------IIn< each
ADDR-8 —=-- Program, ISR
Ll and Task
Machine Codes ADDR-9
for Real Time
Operatng (T[T *
System (RTOS)
ADDR-10 | |
System ROM
Memory

Fig. 1.5 System ROM memory embedding the software, RTOS, data and vector addresses

Embedded Syaras

Final stage software is also called the ROM image. The final machine implementable software §
product embeds in the once programmable flash or ROM (or PROM) as an image in a frame. Bytes at;
address must be defined to create the ROM image. By changing this image, the same hardware platf
will work differently and can be used for entirely different applications or for new upgrades of the §
system. ’ I

1.4.2 Coding of Software in Machine Codes

During codihg in this format, the programmer defines the addresses and the corresponding bytes or blté at
each address. In configuring some specific physical device or subsystem, machine code-based coding is psed.

For example, in a transceiver, placing certain machine code and bits can configure it to transmit at spé¢c
megabytes per second or gigabytes per second, using specific bus and networking protocols. Another ex

ific

ple

is using certain codes for configuring a control register with the processor. During a specific code-segtion
processing, the register can be configured to enable or disable use of its internal cache. However, codipg in

machine implementable codes is done only in specific situations because it is time consuming an

the

programmer must first have to understand the processor instructions set and then memorize the instrucfions

and their machine codes.

1.4.3 Software in Processor Specific Assembly Language

A program or a small specific part can be coded in assembly language using an assembler after understanding

the processor and its instruction set. Assembler is software used for developing codes in assembly.

Assembly language coding is extremely useful for configuring physical devices like ports, a line-digplay
interface, ADC and DAC and reading into or transmitting from a buffer. These codes are also called low-level
codes for the device driver functions. [Sections 1.4.7 and 4.2.4.] They are useful to run the processor or

device-specific features and provide an optimal coding solution. l
res-

Lack of knowledge of writing device driver codes or codes that utilize the processor-specific feat

invoking codes in an embedded system design team can cost a lot. A vendor may charge for the APIs and|also

charge intellectual property fees for each system shipped out of the company.

To make all the codes in assembly language may, however, be very time consuming. Full coding in assembly
may be done only for a few simple, small-scale systems, such as toys, automatic chocolate vending machines,

robots or data acquisition systems.

Figure 1.6 shows the process of converting an assembly language program into machine implementable

software file and then finally obtaining a ROM image file.

1. An assembler translates the assembly software into the machine codes using a step called assembling.
2. In the next step, called linking, a linker links these codes with the other codes required. Linking is

necessary because of the number of codes to be linked for the final binary file. For example, therg

are

the standard codes to program a delay task for which there is a reference in the assembly langwage
program. The codes for the delay must link with the assembled codes. The delay code is sequential
from a certain beginning address. The assembly software code is also sequential from a certain beginhing

address. Both the codes have to be linked at the distinct addresses as well as at the available addr

in the system. The linked file in binary for run on a computer is commonly known as an executable
or simply an ‘.exe’ file. After linking, there has to be reallocation of the sequences of placing the co
before actually placing the codes in memory.

ses
file
des

Intr&d jiction to Embedded Systems
Machine ® Machine
Machine Codes o Codes
Specific Assembler| for the @ — ready for
Assembly [> Progams | g Locating
Language 1 at b at
Program Various o Various
Addresses b= Addresses
7 4| U
®©
&‘:
From ;
library Linker | Bytes for '(3;(‘;'&‘;
needed :D Linked
machine [—— | Programs | Loader |Progrner
codes
Data Bytes
\
Embedded System
ROM Memory

Flg. 1.6 The process of converting an assembly language program into the machine codes
and finally obtaining the ROM image

| In the next step, the loader program performs the task of reallocating the codes after finding the
physical memory addresses available at a given instant. The loader is a part of the operating system
and places codes into the memory after reading the ‘.exe’ file. This step is necessary because the
available memory addresses may not start from 0x0000, and binary codes have to be loaded at different
addresses during the run. The loader finds the appropriate start address. In a computer, after the loader
loads into a section of RAM, the program is ready to run.

The final step of the system design process is locating these codes as a ROM image. The codes are
permanently placed at the addresses actually available in the ROM. In embedded systems, there is no
separate program to keep track of the available addresses at different times during the run, as in a computer.
In embedded systems, therefore, the next step instead of loader after linking is the use of a locator,
which locates the IO tasks and hardware device driver codes at fixed addresses. Port and device addresses
are fixed for a given system as per the interfacing circuit between the system buses and ports or devices.
The locator program reallocates the linked file and creates a file for a permanent location of the codes in
a standard format. The file format may be in the Intel Hex file format or Motorola S-record format. The
designer has to define the available addresses to locate and create files to permanently locate the codes.
Lastly, either (i) a laboratory system, called device programmer, takes as input the ROM image file
and finally burns the image into the PROM or flash or (ii) at a foundry, a mask is created for the ROM
of the embedded system from the ROM image file. [The process of placing the codes in PROM or
flash is also called burning.] The mask created from the image gives the ROM in IC chip form.

configure some specific physical device or subsystem such as the transceiver, machine codes can be
straightaway. For physical device driver codes or codes that utilize processor-specific features-invoking
s, ‘processor-specific’ assembly language is used. A file is then created in three steps using an Assembler,
éer and Locator. The file has the ROM image in a standard format. A device programumer finally burns
thelimage in the PROM or EPROM. A mask created from the image gives the ROM in IC chip form.

i
{

i

@ Embedded Si_+dms

1.4.4 Software in High Level Language l

Since the coding in assembly language is very time consuming in most cases, software is developed in & high-
level language, ‘C’ or ‘C++’ or visual C++ or ‘Java’ in most cases. ‘C’ is usually the preferred languaJe. The
programmer needs to understand only the hardware organization when coding in high level language.| As an
example, consider the following problem.

Example 1.1

Add 127, 29 and 40 and print the square root.
An exemplary C language program for all the processors is as follows. (i) # include <stdio.h>
(i) # include <math.h> (iii) void main (void) { (iv) int il, i2, i3, a; float result,)il =127,
i2=29;,i3=40;a =il +i2 + i3; result = sqrt (a); (vi) printf (result);)

The coding for square root will need many lines of
code and can be done only by an expert assembly
language programmer. To write the program in a high
level language is very simple compared to writing it in
assembly language. ‘C’ programs have a feature that
adds the assembly instructions when using certain
processor-specific features and coding for a specific
section, for example, a port device driver. Figure 1.7
shows the different programming layers in a typical
embedded ‘C’ software. These layers are as follows.

Preprocessor Commands

Main Function

Interrupt Service Routines

Tasks 1....N

Kernel and Scheduler

Standard Library
Functions including
Network Protocol

(i) Processor Commands. (ii) Main Function.
(iii) Interrupt Service Routine. (iv) Multiple tasks, say,
1 to N. (v) Kernel and Scheduler. (vi) Standard library

Functions for
Sending Stack and
Receiving Stack

functions, protocol handling and stack functions.
Figure 1.8 shows the process of converting a
C program into the ROM image file. A compiler
generates the object codes. It assembles the codes
according to the processor instruction set and other specifications. The C compiler for embedded
systems must, as a final step of compilation, use a code-optimizer that optimizes the codes before
linking. After compilation, the linker links the object codes with other needed codes. For examplg, the
linker includes the codes for the functions prinitf and sqrt codes. Codes for device and driver (device
control codes) management also link at this stage: for example, printer device management and driver
codes. After linking, the other steps for creating a file for ROM image are the same as shown earlier in
Figure 1.6.

Fig. 1.7 The different program layers in/ the
embedded software in C

C, C++, Java, Visual C++ are the languages used for software development. A C program has vas
layers: processor commands, main function, task and library functions, interrupt service routines and
(scheduler). The compiler generates an object file. Using a linker and locator, the file for the ROM i
is created for the targeted hardware.

liction to Embedded Systems @

Int

C 1 Machine 3
Progn:am > nges i_n 5
Functions Compiler Object File E
§
From 2 ©
Library Bytes for 3
Needed [> Linked <—1 O
Machine Linker Programs
Codes
Steps 3 and 4 shown in
Figure 1.6
Y
Embedded System
ROM Memory

Fig. 1.8 The process of converting a C program into the file for ROM image

1.4.5 Program Models for Software Designing

The pfogram design task is simplified if a program is modeled.
The different models that are employed during the design processes of the embedded software are as follows:
1.} Sequential Program Model
2.| Object Oriented Program Model
3.} Control and Data flow graph or Synchronous Data Flow (SDF) Graph or Multi Thread Graph (MTG) Model
4.! Finite State Machine for data path
5.} Multithreaded Model for concurrent processing of processes or threads or tasks
(Universal Modeling language) is a modeling language for object oriented programming.
These models are explained Chapter 6.

1.4.6 Software for Concurrent Processing and Scheduling of Multiple
Tasks and ISRs Using an RTOS

An embedded system program is most often designed using multiple processes or multitasks or a
multithreads. [Refer to Sections 7.1 to 7.3 for definitions and understanding of the processes, threads and tasks.]

RTDS functions are highly complex. There are a number of popular and readily available RTOSs.
Chapters 8 to 12 describes the RTOS functions and examples of applications in the embedded systems.

i

Embedded #sﬁams

RTOS is used in most embedded systems and the system does concurrent processing of multipld tasks
when the tasks have real time constraints and deadlines.

1.4.7 Software for Device Drivers and Device Management in an
Operating System

An embedded system is designed to perform multiple functions and has to control multiple physical and
virtual devices. In an embedded system, there may be number of physical devices. Exemplary physicalldevices
are timers, keyboards, display, flash memory, parallel ports and network cards.
A program is also be developed using the concept of virtual devices. Examples of virtual devices are as
follows.
1. A file (of records opened, read, written and closed, and saved as a stream of bytes or words)
2. A pipe (for sending and receiving a stream of bytes from a source to destination)
3. A socket (for sending and receiving a stream of bytes between the client and server software and
between source and destination computing systems)
4. A RAM disk (for using the RAM in a way similar to files on the disk)
A file is a data structure (or virtual device) which sends the records (characters or words) to a data sink (for
example, a program function) and which stores the data from the data source (for example, a program fupction).
A file in a computer may also be stored in the hard disk and in flash memory in embedded system.
The term virtual device follows from the analogy that just as a keyboard gives an input to the processor for
a read, a file also gives an input to the processor. The processor gives an output to a printer for & write.
Similarly, the processor writes an output to the file.
A device for the purpose of control, handling, reading and writing actions can be taken as consipting of
three components. (i) A control register or word that stores the bits that, on setting or resetting by 4 device
driver, control device actions. (ii) A status register or word that provides the flags (bits) to show the device
status to the device driver. (iii) A device mechanism that controls the device actions. There may be input and
output data buffers in a device, which may be written or read by a device driver. Device driver actioss are to
get input into or send output from the control registers, input data buffers, output data buffers and status
registers of the device. i
A device driver is software for opening, connecting or binding, reading, writing and closing or controlling
actions of the device. It is software written in a high level language. It controls functions for devige open
(configure), connect, bind, listen, read or write or close. The device driver executes after the programming of
the control register (or word) of a peripheral or virtual device. The programming is called device initiglisation
or registration or attachment. The driver reads the status register, gets the inputs and writes the ou pilts. It
executes on an interrupt to or from the device.
A driver controls three functions. (i) Initializing, which is activated by placing appropriate bi at the
control register or word. (ii) Calling an ISR on interrupt or on setting a status flag in the status register and
running (driving) the ISR (Interrupt Handler Routine). (iii) Resetting the status flag after an interrupt e:rvice.
A driver may be designed for asynchronous operations (multiple use by tasks one after another) or synchronous
operations (concuirent use by the tasks). ‘
Using the functions of the OS, a device driver coding can be made such that the underlying hardware is
hidden as much as possible. An API then defines the hardware separately. This makes the driver usable when
the device hardware changes in a system.

